


UTFS

Series {THERMOFRESH Units}

> Technichal Catalogue

CONTENTS

- SF.2 O1 INTRODUCTION
- SF.3 O2 PRODUCT KEY
- SF.4/7 GENERAL / COMPONENT FEATURES
- ${\tt SF.8/11} \quad {\tt ---} \quad {\tt O5} \quad {\tt OPERATING / O6} \quad {\tt OPTIONS \ AND} \\ {\tt LIMITS} \quad {\tt / O6} \quad {\tt FEATURES}$
- SF.12/15 7 CAPACITY TABLES
- SF.16 OS CONTROL UNIT
- SF.17 O ELECTRICAL / 1 POWER INFORMATION
- SF.18/22 11 ELECTRICAL WIRING SCHEMATIC
- SF.23/33 12 **DIMENSIONS**
- SF.34 -13 AIRFLOW DIRECTIONS
- SF.35/38 14 DEVICE OPERATING SCENARIOS

INTRODUCTION

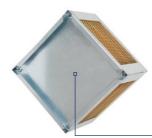
THERMOFRESH Series

- Uniform Airflow Enabling Low Sound Level and Low Energy Consumption Thanks to Aerodynamic Casing Design.
- 9 Different Sizes up to 5500 m³/h Airflow Rate
- Highly Efficient Aluminium Plate Cross-Flow Heat Recovery System
- 6 Staged Airflow Rate Control Powered by Highly Efficient Coupled AC Plug Fans or AC Centrifugal Fans with Low Sound Level
- Minimum Thermal Leak Achieved by 10 mm Elastomeric Rubber Foam Insulation with Low Thermal Conductivity and High Water Vapor Diffusion Resistance
- High Indoor Air Quality Resulted by Filtration Classes from ISO Coarse ≥ %40 (G2) up to ISO ePM10 ≥ %50 (M5)
- Minimum Energy Consumption Thanks to Advanced Automation Control System
- Remote Access to Unit with Wi-Fi Technology and Unit Control by Mobile Application
- Flexible 7-Day Weekly Program
- User Friendly Room Control Unit

UTFS	040	BRCA
CİHAZ KODU	MODEL	OPSİYONLARI
UTFS	050 075 105 160 200 250 320 410 500	LPRH HIGH CAPACITY ELECTRICAL PRE-HEATER HPRH HIGH CAPACITY ELECTRICAL PRE-HEATER LPOH LOW CAPACITY ELECTRICAL POST-HEATER MPOH MEDIUM CAPACITY ELECTRICAL POST-HEATER HPOH HIGH CAPACITY ELECTRICAL POST-HEATER HPOH HIGH CAPACITY ELECTRICAL POST-HEATER CW3R CHILLED WATER COIL 3-ROW CW4R CHILLED WATER COIL 3-ROW CW5R CHILLED WATER COIL 6-ROW DX3R DIRECT EXPANSION COIL 3-ROW DX4R DIRECT EXPANSION COIL 3-ROW DX5R DIRECT EXPANSION COIL 4-ROW DX5R DIRECT EXPANSION COIL 4-ROW DX5R DIRECT EXPANSION COIL 5-ROW HW1R HOT WATER COIL 1-ROW HW1R HOT WATER COIL 1-ROW HW1R HOT WATER COIL 2-ROW COLD/HOT WATER COIL 3-ROW/I-ROW C4H1 COLD/HOT WATER COIL 3-ROW/I-ROW C5H1 COLD/HOT WATER COIL 3-ROW/I-ROW MS5S ISO CADEA 40% (G2) FIRST STAGE SUPPLY FILTER G2FS ISO COOTSE 40% (G2) FIRST STAGE SUPPLY METAL FILTER TXAF 2 VAC TRANSFORMATOR RLYC RELAY CARD O3VH ON/OFF HEATING CONTROL WITH 3-WAY VALVE SET MIDIC CONTROLLER ELECTRICAL PANEL MAXC MAXI CONTROLLER ELECTRICAL PANEL SMCKE DETECTOR/FIRE ALARM DIGITAL INPUT FADI FIRE ALARM DIGITAL INPUT FADI FIRE ALARM DIGITAL INPUT FADI FIRE SALARM DIGITAL INPUT FAPP BSH AIR ON/OFF FLAP DAMPER SATC SUPPLY AIR TEMPERATURE CONTROL RATC RETURN AIR TEMPERATURE CONTROL RATC RETURN AIR TEMPERATURE CONTROL RATC RETURN AIR TEMPERATURE CONTROL ROPE SHAND ON/OFF PLAP DAMPER SATC SUPPLY AIR TEMPERATURE CONTROL RATC RETURN AIR TEMPERATURE CONTROL RATC RETURN AIR TEMPERATURE CONTROL RATC RETURN AIR TEMPERATURE CONTROL RATC RETURN AIR TEMPERATURE CONTROL RATC RETURN AIR TEMPERATURE CONTROL RATC RETURN AIR TEMPERATURE CONTROL ROPI REMOTE ON/OFF PLAP DAMPER SATC SUPPLY AIR TEMPERATURE CONTROL RATC RETURN AIR TEMPERATURE CONTROL RATC RETURN AIR TEMPERATURE CONTROL RATC RETURN AIR TEMPERATURE CONTROL RATC RETURN AIR TEMPERATURE CONTROL ROPI REMOTE ON/OFF PLAP DAMPER SATC SUPPLY AIR TEMPERATURE CONTROL ROPI REMOTE ON/OFF PLAP DAMPER BPPD BY-PASS ON/OFF FLAP DAMPER BPH BH HIGH CAPACITY ELECTRICAL PRE-HEATER + BY-PASS ON/OFF F

GENERAL FEATURES

3.0 ____ Heat recovery units are used to increase the indoor air quality and save energy being lost in the process of ventilation. The units are ideal for ventilating small offices, houses and similar premises. In a house, the air from the toilet and kitchen is directed outward. The unit pulls in the fresh air with the help of ducts and collates it with the exhaust air inside a heat exchanger that can reach efficiencies of 83%. The exhaust air that has transferred its energy is given to the outside and fresh air is given to the living room.


COMPONENT **FEATURES**

STRUCTURE

UTFS units outer skin is manufactured from corrosion resistant pre-painted galvanized sheet. Drainage pan is made from stainless steel and is fully covered by insulation. EPDM leak proof gaskets are used to provide full air tightness at the panels. Balloon type gaskets are placed on the service door to make them air tight as well. 40 mm thick A1 fire safety class rock wool is placed into the sandwich panels with the same thickness in order to reduce sound level and thermal leak.

PLATE HEAT EXCHANGER

__ With the help of low pitched aluminum plated heat exchangers, the warm air leaving room transfers its energy to the cold air entering the room and as a result energy loss will be prevented. In cases where heat transfer is not required, the fresh air goes through the bypass damper omitting the heat exchanger and entering the room directly.

>> Plated Heat Exchanger

4.3. ____ The fans are located inside the unit and are used to lead the fresh air into the room and transfer the exhaust air from the room to the outside. It is designed to create variable pressure and airflow levels and can control its fan revolution according to the system needs. Thermofresh Plus units use 2 EC Centrifugal Fans.

>> Fans

FILTERS

4.4. ____ UTFS unit standard filters are ISO ePM10%50(M5). The filters are placed at the entry of the internal unit to improve the air quality and keep the equipment safe. It is important to do regular control and cleaning to the keep the system functional. Optionally ISO ePM1 50%(F7) is used as first and second stage filter or ISO ePM1 85%(F9) as first stage.

>> Filters

CONTROL PANEL

4.5. ____ UTFS units have just one electrical panel. The electrical pane has a builtin power supply and accommodates the microprocessor that ensures the control of the components. UTFS units do not require any extra power or any additional electrical panels.

> The safety equipment of the system in the panel mainly include automatic and glass fuses, motor protection switches and phase protection relay. The electrical panel contains a microprocessor that processes the signal received from pressure, temperature and humidity sensors. This microprocessor is capable of performing the cooling and fan control operations of the unit. The microprocessor changes depending on the number of options.

> > >> Control Panel

4.6. COIL AND REFRIGERANT (R410A)

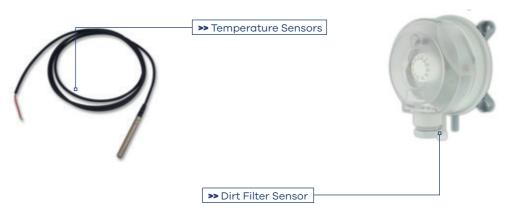
__ UTFS units have water and direct expansion coil as an option. Cold water coil are offered as 3/4/5/6 rows, direct expansion coils as 3/4/5/6/ rows and hot water coils as 1/2 rows.

The refrigerant used in UTFS units is R-410A. This unit is designed to work with this particular gas and should not be used with other refrigerant s. R-410A has a GWP of 2088 and is considered a fluorinated greenhouse gas by the Kyoto protocol.

>> Coil and Refrigerant (R410A)

4.7. PROPORTIONAL HEATING/COOLING VALVE KIT

Valve kits with actuators are used to operate the system more effectively and are given as an option when coils are selected. The cooling and heating processes are proportionally controlled with the help of actuators.


4.8. SENSORS

4.8. There are various sensors depending on the options and accessories in the system. They provide the necessary operational information for the processor by converting the data they acquire and sending them to the microprocessor.

Fresh air temperature sensor plays a vital role in determining the optimal operating conditions of the heat recovery system by measuring the temperature of air coming into the room. The sensor is placed at the damper openings before the heat recovery unit entry.

Dirt filter sensors determine the decrease in filter set pressure values by measuring filter inlet and outlet pressure. It also provides the user with information about the change/cleaning requirements of the filters.

The supply temperature sensor given with the heating/cooling options provides information to the microprocessor by measuring the temperature that enters the room. The sensor helps the system keep the heating/cooling balance.

The optional air quality sensor(CO² sensors) provides the information to the control unit that regulates the fan stages by measuring the amount of carbondioxide in the room.

The optional return air temperature sensor measures the temperature of air leaving the room and provides the information to the microprocessor that uses the data to operate the heat recovery unit more efficiently. The optional smoke detector provides the information to the control unit in the event of fire or beforehand through air property changes and stops the fans. If the unit has dampers, fans and dampers are closed.

05 OPERATING LIMITS

____ Unit operating limits are given below. Operating within the limits is vital for the efficient operation of the device.

On alliana	External Air Temperature						
Cooling	DB [°C]	WB [°C]					
Minimum	-20	-					
Maximum	42	-					

O6 OPTIONS AND FEATURES

LPRH	LOW CAPACITY ELECTRICAL PRE-HEATER	MIDC	MIDI CONTROLLER ELECTRICAL PANEL
HPRH	HIGH CAPACITY ELECTRICAL PRE-HEATER	MAXC	MAXI CONTROLLER ELECTRICAL PANEL
LPOH	LOW CAPACITY ELECTRICAL POST-HEATER	SDFA	SMOKE DETECTOR/FIRE ALARM DIGITAL INPUT
мрон	MEDIUM CAPACITY ELECTRICAL POST-HEATER	FADI	FIRE ALARM DIGITAL INPUT
НРОН	HIGH CAPACITY ELECTRICAL POST-HEATER	FAFD	FRESH AIR ON/OFF FLAP DAMPER
CW3R	CHILLED WATER COIL 3-ROW	EAFD	EXHAUST AIR ON/OFF FLAP DAMPER
CW4R	CHILLED WATER COIL 4-ROW	BPFD	BY-PASS ON/OFF FLAP DAMPER
CW5R	CHILLED WATER COIL 5-ROW	SATC	SUPPLY AIR TEMPERATURE CONTROL
CW6R	CHILLED WATER COIL 6-ROW	RATC	RETURN AIR TEMPERATURE CONTROL
DX3R	DIRECT EXPANSION COIL 3-ROW	FCAL	FILTER CLOGGING ALARM
DX4R	DIRECT EXPANSION COIL 4-ROW	IAQC	INDOOR AIR QUALITY CONTROL
DX5R	DIRECT EXPANSION COIL 5-ROW	RODI	REMOTE ON/OFF DIGITAL INPUT
DX6R	DIRECT EXPANSION COIL 6-ROW	P2VH	PROPORTIONAL HEATING CONTROL WITH 2-WAY VALVE SET
HW1R	HOT WATER COIL 1-ROW	P3VH	PROPORTIONAL HEATING CONTROL WITH 3-WAY VALVE SET
HW2R	HOT WATER COIL 2-ROW	P2VC	PROPORTIONAL COOLING CONTROL WITH 2-WAY VALVE SET
C3H1	COLD/HOT WATER COIL 3-ROW/1-ROW	P3VC	PROPORTIONAL COOLING CONTROL WITH 3-WAY VALVE SET
C4H1	COLD/HOT WATER COIL 4-ROW/1-ROW	IP67	IP67 ELECTRİCAL PANEL
C5H1	COLD/HOT WATER COIL 5-ROW/1-ROW	WIFI	WIRELESS (Wi-Fi) CONTROL
M5FS	ISO ePM10 50% (M5) FIRST STAGE SUPPLY FILTER	CDCA	CIRCULAR DUCT CONNECTION ADAPTOR
G2FS	ISO Coarse 40% (G2) FIRST STAGE SUPPLY METAL FILTER	LPHB	LOW CAPACITY ELECTRICAL PRE-HEATER + BY-PASS ON/OFF FLAP DAMPER
G2FR	ISO Coarse 40% (G2) FIRST STAGE EXHAUST METAL FILTER	НРНВ	HIGH CAPACITY ELECTRICAL PRE-HEATER + BY-PASS ON/OFF FLAP DAMPER
TRAF	24 VAC TRANSFORMATOR	RAHS	RETURN AIR HUMIDITY SENSOR
RLYC	RELAY CARD	O2VH	ON/OFF HEATING CONTROL WITH 2-WAY VALVE SET
ОЗУН	ON/OFF HEATING CONTROL WITH 3-WAY VALVE SET	O2VC	ON/OFF COOLING CONTROL WITH 2-WAY VALVE SET
O3VC	ON/OFF COOLING CONTROL WITH 3-WAY VALVE SET		

6.1. ____ Heats the fresh air before entering the heat recovery unit to increase **ELECTRICAL** the efficiency of the overall heat recovery system. It has the capability of **Electrical Pre Heater** heating the cold outdoor air and regulating the humidity of air entering the LOW/HIGH CAPACITY heat recovery system. - LPRH/H Provides heating to the air entering the room if the temperature needs to **ELECTRICAL** be raise further, mostly used when the room is partially or fully conditioned **Electrical Post** by the outer units. High capacity Electrical Post Heater option has 3 stages. Heater LOW/ MEDIUM/HIGH CAPACITY- LPOH/ MPOH/HPOH Sectional cooling compatible chilled water coils, that are installed at the 6.3. **CHILLED WATER** supply side as an additional module to the unit are used to condition the **COIL 3/4/5/6 ROW** air entering the room. - CW3R/CW4R/ CW5R/CW6R Sectional cooling compatible direct expansion coils, that are installed at DIRECT the supply side as an additional module to the unit are used to condition **EXPANSION COIL** the air entering the room. 3/4/5/6 ROW -DX3R/DX4R/DX5R/ DX6R Sectional cooling compatible hot water coils, that are installed at the **HOT WATER COIL 1/2** supply side as an additional module to the unit are used to condition the ROW - HW1R/HW2R air entering the room. Sectional cooling compatible hot and cold water coils, that are installed at **COLD AND HOT** the supply side as an additional module to the unit are used to condition **WATER COIL 3/4/5-1** the air entering the room. The option should be selected when heating or ROW - C3H1/C4H1/ cooling is required on the same unit. C5H1 Optional filters are placed at the supply side to increase the quality of FIRST/SECOND indoor air. ISO ePM1≥ 50%(F7) in case of single stage filter and ISO ePM10≥ STAGE FINE 55%(M5) with ISO ePM1≥ 50% (F7) or ISO ePM1≥ 85%(F9) in case of second SUPPLY FILTER stage filter is used. F7FS/F7SS/F9SS

6.8. _ MAXI CONTROL-LER ELECTRICAL PANEL - MAXC

A controller that offers advanced automation possibilities for complex applications. Maxi controller needs to be installed when selecting the following options: Smoke detector/Fire Alarm Digital Input, Return Air Temperature Control and Remote On/Off.

In the case of fire, the detector informs the controller of the incident and consequently the controller shuts the unit down while giving alarm information to the input. Likewise, the detector provides the controller with the information from the fire alarm system on site and consequently the controller shuts the unit down.

6.10. FIRE ALARM DIGITAL INPUT -FADI _ The digital input provides the controller the information of a incident with the help of the fire alarm system on site.

6.11. _ FRESH AIR AND EXHAUST AIR ON/ OFF DAMPER -FAFD/EAFD Regulates the amount of fresh air entering the room and the amount of exhaust air leaving the room to increase the overall efficiency of the unit. The airflow rate is regulated with the servomotor controlled dampers.

6.12. BY-PASS ON/OFF DAMPER - BPFD Optionally, the fresh air omits the heat exchangers and is given directly to the room in the case where heat transfer is not necessary with the help of a by-pass damper.

6.13. SUPPLY AND RETURN AIR TEMPERATURE CONTROL – SATC/ RATC Measures the fresh air temperature entering the room and exhaust air leaving the room. The information obtained is provided to the necessary control components, which operates the unit more efficiently.

6.14. FILTER CLOGGING ALARM – FCAL

The filter clogging sensor monitors the pressure at the inlet and outlet of filters, determines that the filter values are below the set limit and informs the user that the filters require cleaning/replacement.

6.15. INDOOR AIR QUALITY CONTROL – IAQC Regulates indoor air quality by controlling the fresh air entering the room with the help of a CO2 sensor situated at the exhaust fan suction duct. The controller provides the necessary fresh air by using the data taken off the sensors and regulates fan stages with this information.

6.17. ____ Valve kits are used in cycles with hot and cold water coils to make the

PROPORTIONAL
OR ON/OFF
HEATING/COOLING
CONTROL WITH
2/3-WAY VALVE
SET - P2VH/P3VH/
P2VC/P3VC/O2VH/
O3VH/O2VC/O3VC

___ Harsh outer environment resistant IP67 class panel.

system more efficient.

6.19.

WIRELESS (WI-FI)

CONTROL - WIFI

IP67 ELECTRICAL

PANEL - IP67

Remote access to the unit thanks to Wi-Fi technology and unit control with mobile application.

6.20. CIRCULAR DUCT CONNECTION ADAPTOR - CDCA

The adaptor is used to connect the inlet and outlet connection to circular ducts.

6.21.

LOW/HIGH

CAPACITY

ELECTRICAL PREHEATER + BY-PASS

ON/OFF DAMPER LPHB/HPHB

Heats the fresh air before entering the heat recovery unit to increase the efficiency of the overall heat recovery system. It has the capability of heating the cold outdoor air and regulating the humidity of air entering the heat recovery system. Optionally, the fresh air omits the heat exchangers and is given directly to the room in the case where heat transfer is not necessary with the help of a by-pass damper.

6.22. -VAC TRANSFORMER -TRAF When indoor air quality, proportional controlled valves and return air humidity sensor are selected, the transformer needs to be installed as well.

6.23. . RETURN AIR HUMIDITY SENSOR - RAHS Should be selected when the indoor humidity value needs to be read.

6.24. _ RELAY CARD - RLYC

6.24. ____ When Pre-Heaters and On/Off dampers are selected, the relay card needs to be installed as well.

CAPACITY TABLES

LITTO Carias							
UTFS Series		050	075	105	160	200	
Technical Specifications							
Nominal Airflow Rate	m³/h	500	750	1050	1600	2000	
Maximum External Static Pressure	Pa	220	210	235	317	204	
Power Supply	V/Ph/Hz	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50	
Exhaust Fan Nominal Motor Power	W	58	91	145	310	310	
Supply Fan Nominal Motor Power	W	58	58 91 145			310	
Fan Model			Backward Cur	rved Direct Couple	d AC Plug Fan		
Fresh Air Filter Class	%	ISO Coarse≥60% (G4)					
Exhaust Air Filter Class	%		IS	60 Coarse≥60% (G	4)		
Cross-Flow Heat Recovery							
Winter Efficiency ¹	%	58	57,8	59	56,5	57,6	
Summer Efficiency ²	%	53,1	52	54,2	51,9	52,9	
Sound							
Sound Pressure Level ³	dB(A)	40	50	53	53	59	
Dimensions							
Height	mm	423	429	477	531	531	
Width	mm	781	891	1005	1181	1382	
Lenght	mm	1017	1103,5	1243,5	1466,5	1498,5	
Weight ⁴	kg	57	65	83	112	130	

1) Winter conditions: Outdoor air temperature -5°C, 80% RH and indoo	or air temperature 22°C, 50% RH.
--	----------------------------------

²⁾ Summer conditions: Outdoor air temperature 35°C, 40% RH and indoor air temperature 24°C, 50% RH.

LITEC Cario							
UTFS Series	5	250	320	410	500		
Technical Specifications							
Nominal Airflow Rate	m³/h	2500	3200	4100	5000		
Maximum External Static Pressure	Pa	180	232	234	150		
Power Supply	V/Ph/Hz	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50		
Exhaust Fan Nominal Motor Power	W	373	550	750	1100		
Supply Fan Nominal Motor Power	W	373	550	750	1100		
Fan Model		Forward Curved Direct Coupled AC Centrifugal Fan					
Fresh Air Filter Class	%		ISO Coarse	e≥60% (G4)			
Exhaust Air Filter Class	%		ISO Coarse	e≥60% (G4)			
Cross-Flow Heat Recovery							
Winter Efficiency ¹	%	57,6	57,5	57,4	57,3		
Summer Efficiency ²	%	52,7	52,5	52,5	52,4		
Sound							
Sound Pressure Level ³	dB(A)	54	54	58	56		
Dimensions							
Height	mm	611	711	711	811		
Width	mm	1478	1578	1749	1800		
Lenght	mm	1900	2000	2200	2250		
Weight ⁴	kg	175	202	251	299		

³⁾ Sound pressure level at 1 m distance in free field.

⁴⁾ Weight of the unit without accessories.

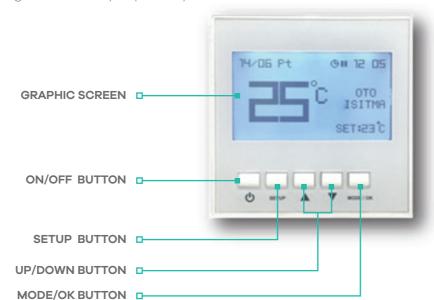
Winter conditions: Outdoor air temperature -5°C, 80% RH and indoor air temperature 22°C, 50% RH.
 Summer conditions: Outdoor air temperature 35°C, 40% RH and indoor air temperature 24°C, 50% RH.

³⁾ Sound pressure level at 1 m distance in free field.

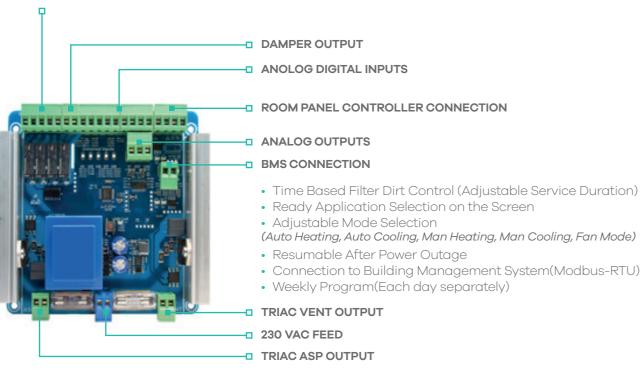
⁴⁾ Weight of the unit without accessories.

Electric Heater and	Inlet Air Conditions						
Coil Capacities	(°C)		UTFS 050	UTFS 075	UTFS 105	UTFS 160	UTFS 200
Fresh Air Unit - Pre-Heater - Low Ca	pacity						
Heating Capacity		kW	1,02	1,54	2,16	3,27	4,11
Fresh Air Unit - Pre-Heater - High Co	apacity						
Heating Capacity		kW	2,04	3,08	4,32	6,54	8,22
Fresh Air Unit - Post-Heater - Low Co	apacity						
Heating Capacity		kW	1,02	1,54	2,16	3,27	4,11
Fresh Air Unit - Post-Heater - Mediu	m Capacity						
Heating Capacity		kW	2,04	3,08	4,32	6,54	8,22
Fresh Air Unit - Post-Heater - High C	Capacity						
Heating Capacity		kW	3,06	4,62	6,48	9,81	12,33
Fresh Air Unit - 3 Row Chilled Water	Coil						
Cooling Capacity	27 KT/50 % RH	kW	2,42	3,60	5,13	7,90	9,66
Fresh Air Unit - 4 Row Chilled Water	Coil						
Cooling Capacity	27 KT/50 % RH	kW	2,75	4,63	6,22	9,99	11,87
Fresh Air Unit - 5 Row Chilled Water	Coil						
Cooling Capacity	27 KT/50 % RH	kW	3,30	5,07	6,99	10,94	13,58
Fresh Air Unit - 6 Row Chilled Water	Coil						
Cooling Capacity	27 KT/50 % RH	kW	3,72	5,69	7,87	11,93	14,90
Fresh Air Unit - 3 Row Direct Expans	ion Coil						
Cooling Capacity	27 KT/50 % RH	kW	2,68	3,98	5,64	8,28	10,36
Heating Capacity	5 KT/80 % RH	kW	3,16	4,93	6,90	10,30	12,88
Fresh Air Unit - 4 Row Direct Expans	ion Coil						
Cooling Capacity	27 KT/50 % RH	kW	3,20	4,83	6,78	9,95	12,40
Heating Capacity	5 KT/80 % RH	kW	3,80	5,70	8,04	12,10	15,16
Fresh Air Unit - 5 Row Direct Expans	ion Coil						
Cooling Capacity	27 KT/50 % RH	kW	3,57	5,38	7,55	11,26	13,99
Heating Capacity	5 KT/80 % RH	kW	4,21	6,32	8,89	13,30	16,68
Fresh Air Unit - 6 Row Direct Expans	ion Coil						
Cooling Capacity	27 KT/50 % RH	kW	3,80	5,91	8,25	12,09	15,25
Heating Capacity	5 KT/80 % RH	kW	4,49	6,66	9,40	14,23	17,75
Fresh Air Unit - 1 Row Hot Water Coil							
Heating Capacity	5 KT/80 % RH	kW	4,42	6,40	8,91	13,25	16,10
Fresh Air Unit - 2 Row Hot Water Coi							
Heating Capacity	5 KT/80 % RH	kW	7,28	11,05	15,38	23,36	28,71

Electric Heater and Coil Capacities	Inlet Air Conditions							
	(°C)		UTFS 250	UTFS 320	UTFS 410	UTFS 500		
Fresh Air Unit - Pre-Heater - Low Capac	ity							
Heating Capacity		kW	5,10	6,54	8,40	10,14		
Fresh Air Unit - Pre-Heater - High Capac	city							
Heating Capacity		kW	10,20	13,08	16,80	20,28		
Fresh Air Unit - Post-Heater - Low Capa	city							
Heating Capacity		kW	5,10	6,54	8,40	10,14		
Fresh Air Unit - Post-Heater - Medium C	apacity							
Heating Capacity		kW	10,20	13,08	16,80	20,28		
Fresh Air Unit - Post-Heater - High Capa	acity							
Heating Capacity		kW	15,30	19,62	25,20	30,42		
Fresh Air Unit - 3 Row Chilled Water Coil								
Cooling Capacity	27 KT/50 % RH	kW	12,77	15,74	20,48	25,18		
Fresh Air Unit - 4 Row Chilled Water Coil								
Cooling Capacity	27 KT/50 % RH	kW	15,32	19,27	24,78	30,25		
Fresh Air Unit - 5 Row Chilled Water Coil								
Cooling Capacity	27 KT/50 % RH	kW	17,15	21,82	27,90	33,92		
Fresh Air Unit - 6 Row Chilled Water Coil								
Cooling Capacity	27 KT/50 % RH	kW	18,86	23,81	30,60	37,35		
Fresh Air Unit - 3 Row Direct Expansion	Coil							
Cooling Capacity	27 KT/50 % RH	kW	12,98	16,61	21,39	25,88		
Heating Capacity	5 KT/80 % RH	kW	16,23	20,61	26,27	32,24		
Fresh Air Unit - 4 Row Direct Expansion	Coil							
Cooling Capacity	27 KT/50 % RH	kW	15,67	19,95	25,45	31,25		
Heating Capacity	5 KT/80 % RH	kW	18,97	24,21	31,11	37,72		
Fresh Air Unit - 5 Row Direct Expansion	Coil							
Cooling Capacity	27 KT/50 % RH	kW	17,61	22,57	28,71	35,18		
Heating Capacity	5 KT/80 % RH	kW	20,90	26,61	34,22	41,61		
Fresh Air Unit - 6 Row Direct Expansion	Coil							
Cooling Capacity	27 KT/50 % RH	kW	19,13	24,63	31,28	38,40		
Heating Capacity	5 KT/80 % RH	kW	22,25	28,31	36,42	44,27		
Fresh Air Unit - 1 Row Hot Water Coil	Fresh Air Unit - 1 Row Hot Water Coil							
Heating Capacity	5 KT/80 % RH	kW	20,05	25,54	33,95	40,46		
Fresh Air Unit - 2 Row Hot Water Coil								
Heating Capacity	5 KT/80 % RH	kW	37,06	45,89	59,68	73,38		



cold ho


O8 CONTROL UNIT

CONTROL PANEL

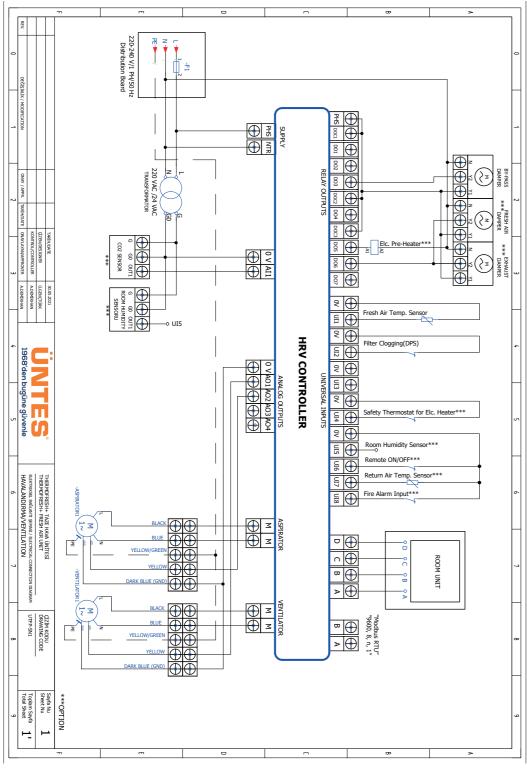
- _ 3'1" Graphic Screen
- Aspirator, Ventilator 6 Step Speed Control
- Automatic/Manual Operation
- Heating/Cooling/Fan Modes
- Language Options Selection(Turkish/English)
- Internal Room Temperature Sensor
- User Friendly Design
- Minimum and Maximum Set Temperature Limit
- Weekly Program(Each day Separately)

ELECTRIC HEATER INPUT

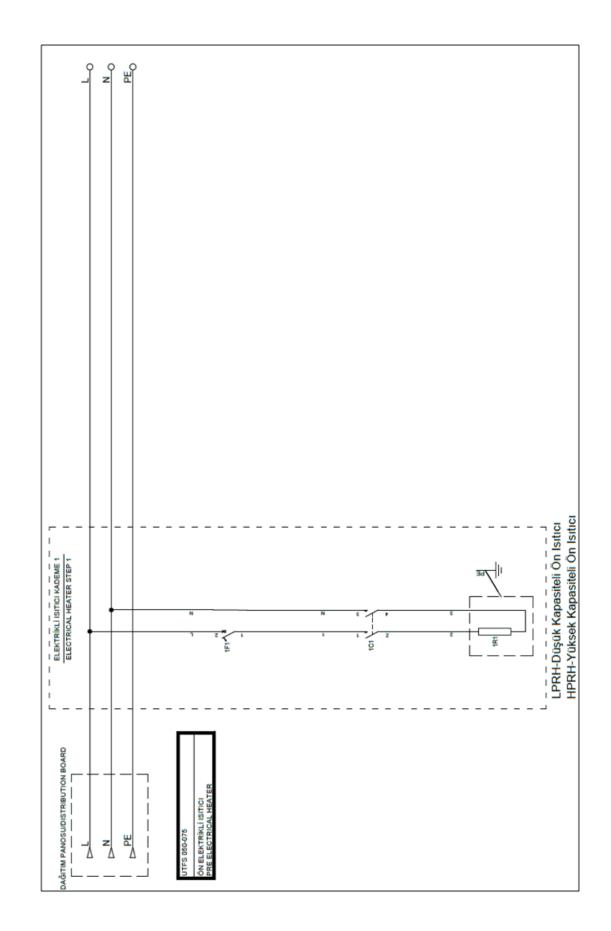
09 ELECTRICAL CONNECTION

9.1. ELECTRICAL CONNECTION

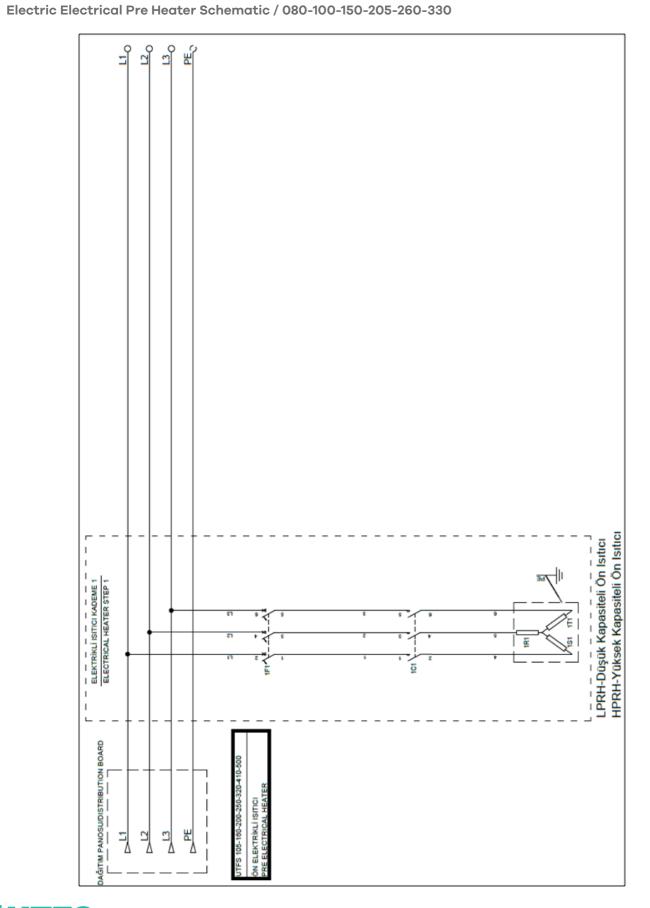
Electrical connection operations on the electric panel should be conducted by following the procedures below. These rules are not suggestions and should be followed to ensure the safety of user;

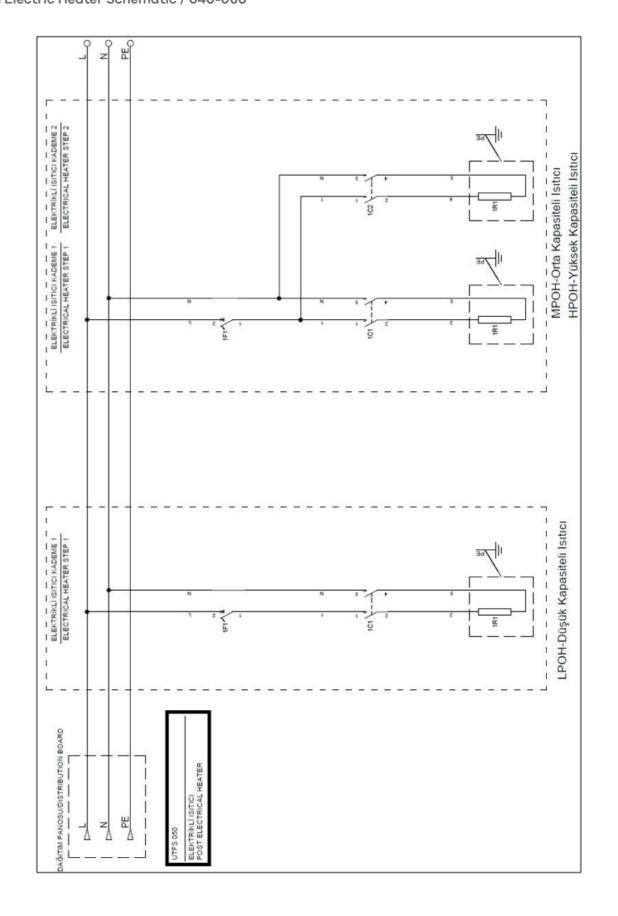

- Equipment and cables to be used in electricity connection should be chosen according to the maximum current values given in the tables and figures. Figures can also be found on the electrical panel door.
- Connections, over current protections and magnetic switches must comply with CEI EN 60204 European norms. If a stray current relay will be used in addition to the magnetic protection, this relay must have 30–300 mA block. This will also protect the operator against the isolator defects.
- Grounding cable sections should by no means be under the values given in the diagrams.
- The route of the electrical supply cables must not obstruct the service covers of the unit.

POWER INFORMATION

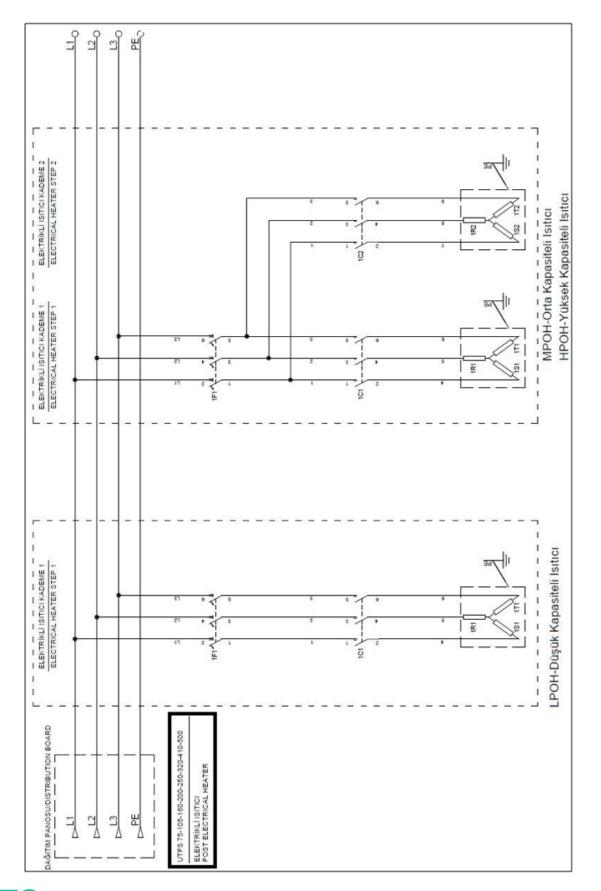

UTFS	Fan Motor Absorbed	Electrical Pre Heater Absorbed Current (A)		Electrical Post Heater Absorbed Current (A)		
Model	Current (A)	Low Capacity	High Capacity	Low Capacity	Medium Capacity	High Capacity
050	0,45	4,43	8,87	4,43	8,87	13,3
075	0,68	6,70	13,39	2,22	4,44	6,65
105	1,1	3,11	6,22	3,11	6,22	9,33
160	2,25	4,71	9,42	4,71	9,42	14,13
200	2,25	5,92	11,84	5,92	11,84	17,76
250	5,1	7,34	14,69	7,34	14,69	22,03
320	6,8	9,42	18,84	9,42	18,84	28,25
410	7,77	12,10	24,19	12,1	24,19	36,29
500	10	14,60	29,20	14,6	29,2	43,8

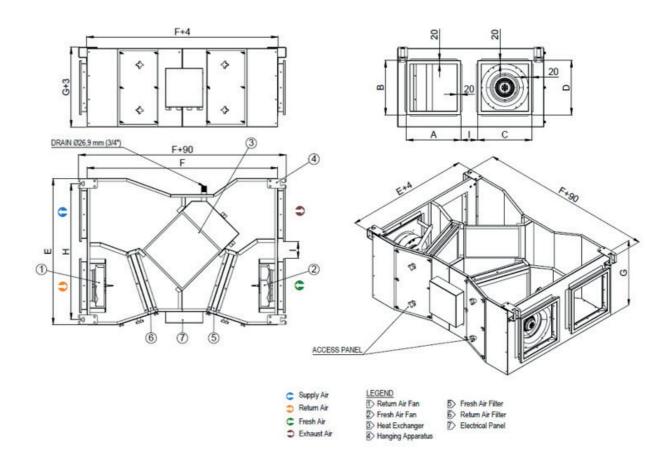
ELECTRICAL WIRING SCHEMATIC




www.untes.com

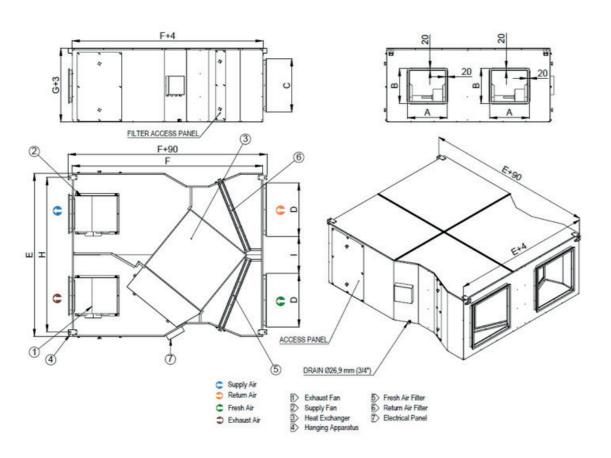
www.untes.com



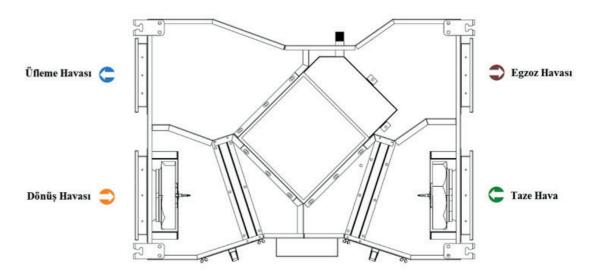

cold **X**

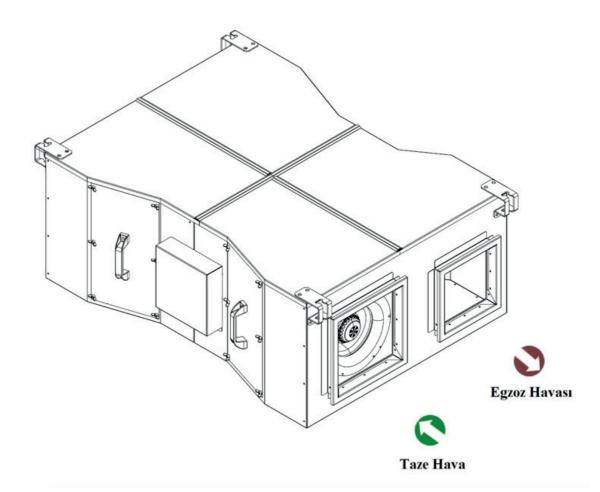
Main Electric Heater Schematic / 080-100-150-205-260-330

12 DIMENSIONS


www.untes.com

DIMENSION	MODELS								
(mm)	UTFS 050	UTFS 075	UTFS 105	UTFS 160	UTFS 200				
А	290	295	315	360	360				
В	290	295	315	360	360				
С	290	295	315	360	360				
D	290	295	315	360	360				
Е	781,5	891	1005	1177	1257				
F	1017	1103,5	1243,5	1366,5	1398,5				
G	423	429	477	531	576				
W	725,5	835	949	1121	1201				
Н	90	169,5	204	284	304				





DIMENSION	MODELS							
(mm)	UTFS 250	UTFS 320	UTFS 410	UTFS 500				
А	344	373	373	437				
В	308	336	336	384				
С	460	490	540	590				
D	460	490	540	590				
Е	1353	1428	1600	1800				
F	1600	1700	1900	2100				
G	681	711	761	811				
W	1257	1332	1504	1704				
Н	193,5	238,5	260,5	410,5				

13 AIRFLOW DIRECTIONS

14 DEVICE OPERATING SCENARIOS

Scenario 1 (Only Ventilation)

In this scenario, 2 EC fan motors connected to triac outlets operate at different speed steps according to the required load determined by the thermostat input temperature or the information obtained by the CO₂ sensors(Optional).

If the outer temperature falls below the limit, then the Electrical Pre Heater is activated via Relay 1(Optional). The damper motors are activated via Relay 2 when the device is started(Optional). The Bypass damper motor is activated via Relay 3 in the case heat exchanger frost protection, temperature difference of \pm 1K between indoor and outdoor environment and freecooling/freeheating.

Scenario 2 (Ventilation + 2 Step Electric Heating)

In this scenario, 2 EC fan motors connected to triac outlets operate at different speed steps according to the required load determined by the thermostat input temperature or the information obtained by the CO₂ sensors(Optional).

If the set temperature is higher than the room temperature in heating, then the electric heater will activate via Relay 1, Relay 2 and in 3.step via Relay 1+Relay 2. In proportional heating(Optional), no relay is used as outlet. The Bypass damper motor is activated via Relay 4 in the case heat exchanger frost protection, temperature difference of \pm 1K between indoor and outdoor environment and freecooling/freeheating. If the outdoor air temperature falls below the limit, then the electric heater(Optional) will activate via Relay 5.

Scenario 3 (Ventilation + Water Heating)

In this scenario, 2 EC fan motors connected to triac outlets operate at different speed steps according to the required load determined by the thermostat input temperature or the information obtained by the CO₂ sensors(Optional).

If the outer temperature falls below the limit, then the Electrical Pre Heater is activated via Relay 1(Optional). The damper motors are activated via Relay 2 when the device is started(Optional). The Bypass damper motor is activated via Relay 3 in the case heat exchanger frost protection, temperature difference of $\pm\,1\rm K$ between indoor and outdoor environment and freecooling/freeheating. Heating valve motor is controlled via AO3 proportional heating outlet.

Scenario 4 (Ventilation + Water Cooling)

In this scenario, 2 EC fan motors connected to triac outlets operate at different speed steps according to the required load determined by the thermostat input temperature or the information obtained by the CO₂ sensors(Optional).

If the outer temperature falls below the limit, then the Electrical Pre Heater is activated via Relay 1(Optional). The damper motors are activated via Relay 2 when the device is started(Optional). The Bypass damper motor is activated via Relay 3 in the case heat exchanger frost protection, temperature difference of \pm 1K between indoor and outdoor environment and freecooling/freeheating. Cooling valve motor is controlled via AO4 proportional cooling outlet.

Scenario 5 (Ventilation + Water Heating + Water Cooling)

In this scenario, 2 EC fan motors connected to triac outlets operate at different speed steps according to the required load determined by the thermostat input temperature or the information obtained by the CO₂ sensors(Optional).

If the outer temperature falls below the limit, then the Electrical Pre Heater is activated via Relay 1(Optional). The damper motors are activated via Relay 2 when the device is started(Optional). The Bypass damper motor is activated via Relay 3 in the case heat exchanger frost protection, temperature difference of $\pm\,1\rm K$ between indoor and outdoor environment and freecooling/freeheating. Heating valve motor is controlled via AO3 proportional heating outlet and cooling valve motor via AO4 proportional cooling outlet.

Scenario 6 (Ventilation + Water Cooling + Electric Heating)

In this scenario, 2 EC fan motors connected to triac outlets operate at different speed steps according to the required load determined by the thermostat input temperature or the information obtained by the CO₂ sensors(Optional).

If the set temperature is higher than the room temperature in heating, then the electric heater will activate via Relay 1, Relay 2 and in 3.step via Relay 1+Relay 2. In proportional heating(Optional), no relay is used as outlet. The Bypass damper motor is activated via Relay 3 in the case heat exchanger frost protection, temperature difference of \pm 1K between indoor and outdoor environment and freecooling/freeheating. The damper motors are activated via Relay 4 when the device is started(Optional). Heaters are controlled via AO3 proportional heating outlet(Optional) and cooling valve motor via AO4 proportional cooling outlet.

cold hg

Scenario 8 (Ventilation + Dx Cooling)

In this scenario, 2 EC fan motors connected to triac outlets operate at different speed steps according to the required load determined by the thermostat input temperature or the information obtained by the CO₂ sensors(Optional).

If the outer temperature falls below the limit, then the Electrical Pre Heater is activated via Relay 1(Optional). The damper motors are activated via Relay 2 when the device is started(Optional). The Bypass damper motor is activated via Relay 3 in the case heat exchanger frost protection, temperature difference of ± 1K between indoor and outdoor environment and freecooling/freeheating. Compressor opening and closing contactors are activated via Relay 4. Dx systems are controlled via AO4 proportional cooling outlet.

Scenario 9 (Ventilation + Dx Heatpump)

In this scenario, 2 EC fan motors connected to triac outlets operate at different speed steps according to the required load determined by the thermostat input temperature or the information obtained by the CO₂ sensors(Optional).

In cooling mode, the compressor opening-closing contactors are activated via Relay 1 and in heating mode via Relay 2. The Bypass damper motor is activated via Relay 4 in the case heat exchanger frost protection, temperature difference of \pm 1K between indoor and outdoor environment and freecooling/freeheating. The damper motors are activated via Relay 5 when the device is started(Optional). If the outer temperature falls below the limit, then the Electrical Pre Heater is activated via Relay 6(Optional). Heating system is controlled via AO3 proportional heating outlet.

Scenario 10 (Ventilation + Dx Cooling + Electric Heating)

In this scenario, 2 EC fan motors connected to triac outlets operate at different speed steps according to the required load determined by the thermostat input temperature or the information obtained by the CO₂ sensors(Optional).

If the set temperature is higher than the room temperature in heating, then the electric heater will activate via Relay 1, Relay 2 and in 3.step via Relay 1+Relay 2. In proportional heating(Optional), no relay is used as outlet. The Bypass damper motor is activated via Relay 3 in the case heat exchanger frost protection, temperature difference of ± 1K between indoor and outdoor environment and freecooling/freeheating. In cooling mode, the compressor opening-closing contactors are activated via Relay 4. The damper motors are activated via Relay 5 when the device is started(Optional). If the outer temperature falls below the limit, then the Electrical Pre Heater is activated via Relay 6(Optional). Heating system is controlled via AO3 proportional heating outlet and Dx system via AO4 proportional cooling outlet.

Scenario 11 (Ventilation + Dx Cooling)

In this scenario, 2 EC fan motors connected to triac outlets operate at different speed steps according to the required load determined by the thermostat input temperature or the information obtained by the CO_2 sensors(Optional).

The damper motors are activated via Relay 1 when the device is started(Optional). If the outer temperature falls below the limit, then the Electrical Pre Heater is activated via Relay 2(Optional). The Bypass damper motor is activated via Relay 3 in the case heat exchanger frost protection, temperature difference of ± 1K between indoor and outdoor environment and freecooling/freeheating. In cooling mode, the compressor opening-closing contactors are activated via Relay 4. VRF system is controlled via AO4 proportional cooling outlet.

Scenario 12 (Ventilation + Dx Heatpump)

In this scenario, 2 EC fan motors connected to triac outlets operate at different speed steps according to the required load determined by the thermostat input temperature or the information obtained by the CO_2 sensors(Optional).

In heating mode, the opening-closing contactors are activated via Relay 1 and Relay 2. In cooling mode, the compressor opening-closing contactors are activated via Relay 1. Bypass damper motor is activated via Relay 4 in the case heat exchanger frost protection, temperature difference of \pm 1K between indoor and outdoor environment and freecooling/freeheating. The damper motors are activated via Relay 5 when the device is started(Optional). If the outer temperature falls below the limit, then the Electrical Pre Heater is activated via Relay 6(Optional). VRF heating and cooling system is controlled via AO3 proportional heating-cooling outlet.

Scenario 13 (Ventilation + Dx Cooling + Electric Heating)

In this scenario, 2 EC fan motors connected to triac outlets operate at different speed steps according to the required load determined by the thermostat input temperature or the information obtained by the CO_2 sensors(Optional).

If the set temperature is higher than the room temperature in heating, then the electric heater will activate via Relay 1, Relay 2 and in 3.step via Relay 1+Relay 2. The Bypass damper motor is activated via Relay 3 in the case heat exchanger frost protection, temperature difference of \pm 1K between indoor and outdoor environment and freecooling/freeheating. In cooling mode, the compressor opening-closing contactors are activated via Relay 4. The damper motors are activated via Relay 5 when the device is started(Optional). If the outer temperature falls below the limit, then the Electrical Pre Heater is activated via Relay 6(Optional). Heaters are controlled via AO3 proportional heating outlet(Optional) and VRF system via AO4 proportional cooling outlet.

EXPORT SALES OFFICE

Address: 53th Main Street 1450th Street Ulusoy Plaza No: 9/50

Cukurambar, **Ankara, Turkey**

T+90 (312) 287 91 00 **F**+90 (312) 284 91 00

Email: export@untes.com.tr

MANUFACTURING PLANT-1

Air Handling & Ventilations Systems Fan Coil Systems

Packaged Air Conditioning Systems Address: Istanbul Road 37th km Kahramankazan, Ankara, Turkey

MANUFACTURING PLANT-2

Water Chiller and Heat Pumps

Address: Istanbul Road 24th km Saraykoy, Ankara

www.untes.com

Untes Heating Air Conditioner Inc. reserves the right to make changes in the products, technical data, figures, designs and materials of the products in the catalog without any notice or information. All contents are copyrighted by Untes.

